
Expectation Maximization Tutorial by Avi Kak

Expectation-Maximization Algorithm for

Clustering Multidimensional Numerical

Data

Avinash Kak

Purdue University

April 5, 2013

7:40pm

An RVL Tutorial Presentation

Summer 2012

(minor formatting changes: April 2013)

c©2013 Avinash Kak, Purdue University

1

Expectation Maximization Tutorial by Avi Kak

CONTENTS

Section Title Page

1 What Makes EM Magical? 3

2 EM: The Core Notions 6

3 An Example of EM Estimation in 17
Which the Unobserved Data is
Just the Missing Data

4 EM for Clustering Data That Can 38
be Modeled as a Gaussian Mixture

5 Algorithm::ExpectationMaximization 69
— a Perl Module

6 Convenience Scripts in 81
Algorithm::ExpectationMaximization

7 Some Clustering Results Obtained with 84
Algorithm::ExpectationMaximization

8 Acknowledgments 100

2

Expectation Maximization Tutorial by Avi Kak

1. What Makes EM Magical?

• Despite the fact that EM can occasionally

get stuck in a local maximum as you es-

timate the parameters by maximizing the

log-likelihood of the observed data, in my

mind there are three things that make it

magical:

– the ability to simultaneously optimize a

large number of variables

– the ability to find good estimates for any

missing information in your data at the

same time

– and, in the context of clustering multidi-

mensional data that lends itself to mod-

eling by a Gaussian mixture, the abil-

ity to create both the traditional “hard”

clusters and and not-so-traditional “soft”

clusters.

3

Expectation Maximization Tutorial by Avi Kak

• With regard to the ability of EM to simul-

taneously optimize a large number of vari-

ables, consider the case of clustering three-

dimensional data:

– Each Gaussian cluster in 3D space is

characterized by the following 10 vari-

ables: the 6 unique elements of the 3×3

covariance matrix (which must be sym-

metric and positive-definite), the 3 unique

elements of the mean, and the prior as-

sociated with the Gaussian.

– Now let’s say you expect to see six Gaus-

sians in your data. What that means is

that you would want the values for 59

variables (remember the unit-summation

constraint on the class priors which re-

duces the overall number of variables by

one) to be estimated by the algorithm

that seeks to discover the clusters in

your data.

4

Expectation Maximization Tutorial by Avi Kak

– What’s amazing is that, despite the large

number of variables that need to be op-

timized simultaneously, the chances are

that the EM algorithm will give you a

very good approximation to the correct

answer.

• About EM returning both hard and soft

clusters, by hard clusters I mean a disjoint

partition of the data. This is normally what

classifiers do. By soft clusters I mean al-

lowing for a data point to belong to two

or more clusters at the same time, the

“level of membership” in a cluster being

expressed by the posterior probabilities of

the classes at the data point. (We will

use the words “cluster” and “class” syn-

onymously in this tutorial.)

5

Expectation Maximization Tutorial by Avi Kak

2. EM: The Core Notions

• EM is based on the following core ideas:

– That there exists an analytic model for

the data and that we know the func-

tional form of the model. However, we

do NOT know the values for the param-

eters that characterize this functional

form).

– We have a set of recorded data points in

some multidimensional space, but some

elements of the data are missing. (If

you are mystified by this statement, do

not worry. It will become clear shortly.)

– We refer to the missing elements of the

data as unobserved data.

6

Expectation Maximization Tutorial by Avi Kak

– While in some cases of estimation, it is

easy to put your finger on what could be

referred to as unobserved data, in others

it can take some imagination — some

other way of looking at your recorded

data for you to be able to conceptualize

the existence of unobserved data

– Regardless of how you bring into play

the unobserved data — whether due to

the fact that you actually failed to record

some of the data or whether your new

way of looking at the data generation

process brought into existence certain

unobservables — the notion of unob-

served data is central to a strict imple-

mentation of the EM algorithm.

– Some folks refer to the unobserved data

through the notion of hidden variables.

7

Expectation Maximization Tutorial by Avi Kak

– However, the problem with the termi-

nology “hidden variables” is that it fails

to capture the fact that some portions

of the data may be missing because, say,

your equipment failed to record them at

the moment they became available. It’s

too much of a stretch of imagination to

refer to such “failure to record” in terms

of “hidden variables”.

– The notion of unobserved data is cen-

tral to EM because that is what makes

it possible to construct an iterative pro-

cedure for the maximization of the log-

likelihood of the observed data.

– Obviously, we wish for EM to find the

maximum-likelihood (ML) estimates for

the parameters of the data model. The

model parameters estimated by EM should

be ML in the sense that they maximize

the likelihood of all of the observed data.

8

Expectation Maximization Tutorial by Avi Kak

– We also wish for EM to give us the best

possible values (again in the most like-

lihood sense vis-a-vis all the observed

data) for the unobserved data.

• Since folks new to EM have difficulty with

the notion of unobserved data, the rest of

this section presents two examples, one in

which the unobserved data is literally so —

that is, a part of the data that needed to be

recorded was not recorded — and the other

in which the unobserved data is a product

of our imagination. The first example is

by Duda, Hart, and Stork and the second

based on a tutorial presentation of EM by

Jeff Bilmes, “ A Gentle Tutorial of the EM

Algorithm and its Applications to Param-

eter Estimation for Gaussian Mixtures and

Hidden Markov Models,” Tech. Report, U.

C. Berkeley.

9

Expectation Maximization Tutorial by Avi Kak

Example 1 of Unobserved Data:

– Consider the case when the observed

data consists of N points in a 2D plane.

– Let’s say that we know a priori that a

single multivariate Gaussian is a good

model for the data. We only know

the functional form of the model —

we do NOT know the values for the

parameters of this model.

– That is, if ~x represents one element

of the observed data, we can write

p(~x) =
1

(2π)d/2 |Σ|1/2
e−

1

2
(~x−~µ)TΣ−1(~x−~µ) (1)

where we think of ~x as a d-dimensional

column vector.

10

Expectation Maximization Tutorial by Avi Kak

– The yet-unknown mean of the observed

data is represented by the d-dimensional

column vector ~µ.

– The yet-unknown covariance of the

observed data represented by a positive-

definite and symmetric d×d matrix Σ.

– In our example, d = 2. So we are talk-

ing about 5 unknowns in the Gaussian

model, of which three are for the sym-

metric 2× 2 covariance matrix Σ and

two for the mean vector ~µ.

– Given the data model as described above,

let’s say we are in possession of N ob-

servations, of which the last one is

only partial. We consider an obser-

vation to be partial if only one of the

two coordinates is known.

11

Expectation Maximization Tutorial by Avi Kak

– Let’s denote the N−1 complete obser-

vations by ~x1, ~x2, . . . and ~xN−1, and

the last partial observation by ~x∗N .

– The question here is: Can EM be used

to estimate the parameters of the un-

derlying Gaussian model, while at the

same time, providing us with an es-

timate for the missing potion of the

observation ~x∗N?

Example 2 of Unobserved Data:

– Consider the following case: Our ob-

served data can be modeled by a mix-

ture of K Gaussians in which each

Gaussian is given by

p(~x) =
1

(2π)d/2 |Σi|1/2
e−

1
2
(~x−~µi)TΣ−1(~x−~µi) (2)

12

Expectation Maximization Tutorial by Avi Kak

– In the above model, |Σi| is the deter-

minant of the d × d covariance ma-

trix Σi for the ith Gaussian, µi the

mean of the same. We also associate

a prior probability ai with the ith Gaus-

sian with regard to its contribution to

the mixture.

– Our goal is automatic clustering of

the observations into disjoint clusters,

which each cluster corresponding to a

single Gaussian.

– The question here is whether EM can

be used to estimate the class labels for

the data elements, while, at the same

time, estimating the means and the

covariances of the individual Gaussians

in the mixture.

13

Expectation Maximization Tutorial by Avi Kak

– We obviously need to conceptualize

the existence of unobserved data in

this case. On the face of it, it is not

clear as to what would constitute the

unobserved data after we have recorded

the N data points.

– As it turns out, we can conceptualize

the needed unobserved data by think-

ing of the data generation process in a

manner that allows a random variable

to be associated with the selection of

the Gaussian for each data point, as

we next describe.

– We imagine the N data observations

~x1, ~x2, . . . , ~xN as having been gener-

ated sequentially through N different

data generation events.

14

Expectation Maximization Tutorial by Avi Kak

– Next, we bring into existence a se-

quence of N scalar random variables

Y = {y1, y2, . . . , yN} that correspond

to the N observations X = {~x1, ~x2, . . . , ~xN}
on an index-by-index basis. The vari-

able yi will take on a random value

from the set {1,2, . . . ,K}, the value

corresponding to the Gaussian that was

chosen for the production of ~xi.

– As shown in Section 4 of this tutorial,

treating Y = {y1, y2, . . . , yN} as unob-

served data allows us to use the EM

algorithm for an iterative maximiza-

tion of the log-likelihood for the data

actually observed.

– In this case, it makes sense to refer

to the unobserved data as the hidden

variables in the estimation process.

15

Expectation Maximization Tutorial by Avi Kak

• As mentioned earlier, the next section will

present an example in which the unobserved

data is literally so. Subsequently, in Sec-

tion 5, we will talk about using EM for

clustering Gaussian mixture data.

16

Expectation Maximization Tutorial by Avi Kak

3. An Example of EM Estimation in

Which the Unobserved Data is Just the

Missing Data

• This example is by Duda, Hart, and Stork

(DHS) from their book “Pattern Classifi-

cation”, pages 126-128.

• My goal in using the DHS example is both

to illustrate that the unobserved data can

indeed be just the missing data, and to

develop the notion of how the unobserved

data facilitates the development of an it-

erative method for the maximization of the

log-likelihood of the data actually observed.

• The observed data in this example will con-

sist of four randomly produced points in

a plane, with only the second coordinate

available for the last point.

17

Expectation Maximization Tutorial by Avi Kak

• The coordinate values for the four observed

points are: ~x1 =
(

0
2

)

, ~x2 =
(

1
0

)

, ~x3 =
(

2
2

)

, and ~x4 =
(

∗
4

)

. Since the first co-

ordinate of the last observation, ~x4, is un-

known, we use the symbol ’*’ for its value.

• We will denote the last observation ~x4 =
(

x4,1
4

)

, where the variable x4,1 stands for

the missing information in the data.

• So the problem is to estimate a value for

x4,1 that would be “consistent” — consis-

tent in the maximum-likelihood sense —

with the observed values for ~x1, ~x2, ~x3,

and for the x4,2 coordinate of ~x4.

• To keep the example simple, we assume

the observed data can be modeled by a

Gaussian with uncorrelated x and y coordi-

nates.

18

Expectation Maximization Tutorial by Avi Kak

• The Gaussian distribution for the data is

given by

p(~x) =
1

(2π)d/2 |Σ|1/2
e−

1

2
(~x−~µ)TΣ−1(~x−~µ) (3)

where d = 2, and with the covariance of

this Gaussian given by

Σ =

[

σ2
1 0
0 σ2

2

]

(4)

• We will express the mean of the Gaussian

in terms of its coordinates through:

~µ =

(

µ1

µ2

)

(5)

• As the reader can see, there are four pa-

rameters, yet unknown, in the data model:

σ21, σ
2
2, µ1 and µ2. We will next talk about

how these parameters can be estimated

with EM.

19

Expectation Maximization Tutorial by Avi Kak

• The EM algorithm requires us to iterate

through the following two steps:

1. The Expectation Step: Using the cur-

rent best guess for the parameters of

the data model, we construct an expres-

sion for the log-likelihood for all obser-

vations; this expression being marginal-

ized over the unobserved data. This

expression will be shown to depend on

both the current best guess for the model

parameters and model parameters treated

as variables in the log-likelihood func-

tion.

2. The Maximization Step: Given the

expression resulting from the previous

step, for the next guess we choose those

values for the model parameters that

maximize the expectation expression. These

constitute our best new guess for the

model parameters.

20

Expectation Maximization Tutorial by Avi Kak

• The output of the Expectation Step cod-

ifies our expectation with regard to what

model parameters are most consistent with

the data actually observed and with the

current guess for the parameters — pro-

vided we maximize the expression yielded

by this step.

• We stop iterating through the two steps

when any further change in the log-likelihood

of the observed data falls below some small

threshold.

• This brings us to the very important sub-

ject of the “marginalization” of the log-

likelihood of the observed data. By marginal-

ization in the Expectation Step we mean

integration of the log-likelihood for the ob-

served data over all possibilities for the un-

observed data.

21

Expectation Maximization Tutorial by Avi Kak

• In order to give substance to the remark

made above, let’s first write down an ex-

pression for log-likelihood for the data ac-

tually observed.

• Assuming the observations to have been

made independently, ordinarily, the expres-

sion for the log-likelihood for the four data

points would be

LL =

4
∑

i=1

ln p(~xi|~θ) (6)

where by the vector ~θ we mean the model
parameters:

~θ =

µ1

µ2

σ2
1

σ2
2

(7)

22

Expectation Maximization Tutorial by Avi Kak

• However, since we know that the last point,

~x4, was observed only partially — that is,

only the second coordinate of the last point

was actually observed — we need to tease

it out of the summation in Eq. (6) for

special treatment later.

• So let’s write the log-likelihood expression

in the following form:

LL =

3
∑

i=1

ln p(~xi|~θ) + ln p(~x4|~θ) (8)

• As you will see later, in the Maximization

Step of each iteration of EM, we would

want to choose a value for the parameter

vector ~θ that maximizes the log-likelihood

shown above. Although, in and of itself,

that sounds straightforward, the reality of

what needs to be maximized is a little bit

more complex.

23

Expectation Maximization Tutorial by Avi Kak

• Note that we want the maximization of the

log-likelihood to NOT be absolute in any

sense, but to be with respect to the current

guess for the model parameter vector ~θ. (If

we could solve the absolute maximization

of the log-likelihood problem, we would not

need the EM algorithm.)

• To address the issue raised in the previ-

ous bullet, let’s denote the current guess

for the model parameters by ~θg. So the

question then becomes as to how to “link-

up” the log-likelihood expression shown in

Equation (8) with ~θg.

• The value for the log-likelihood shown in

Eq. (8) depends obviously on the data

coordinate x4,1, whose value we do not

know. The best way to deal with this lack

of knowledge about x4,1 is to average out

the log-likelihood with respect to x4,1.

24

Expectation Maximization Tutorial by Avi Kak

• In a multi-variable scenario, averaging out

an entity with respect to any single vari-

able means carrying out a marginal inte-

gration of the entity with respect to the

probability density function for the variable

in question.

• The question then arises as to what density

function to use for the variable x4,1. This

is where the current best guess about the

data model comes in. Recall, we represent

our current best guess for the data model

by the parameter vector ~θg.

• Since the parameter vector ~θg is for a model

that includes two coordinates, in and of it-

self, this parameter vector does not apply

directly to the scalar variable x4,1.

25

Expectation Maximization Tutorial by Avi Kak

• So the best we can do for the needed den-

sity function for x4,1 at the moment is to

express it generally as p(x4,1|~θg, x4,2 = 4).

• Now we are ready to write the log-likelihood

for all of the data observations, while tak-

ing into account the missing data coordi-

nate x4,1.

• As stated earlier, the new log-likelihood will

be a marginalization of the original log-

likelihood over the unobserved data ele-

ment:

LL′ =

∫ ∞

−∞

{

3
∑

i=1

ln p(~xi|~θ) + ln p(~x4|~θ)

}

p(x4,1|θg, x4,2 = 4) dx4,1

(9)

As you can see, this marginalization of the

log-likelihood over x4,1 is with respect to

the current best guess θg for the model

parameters.

26

Expectation Maximization Tutorial by Avi Kak

• Since the observations of the four data

points in the 2D plane are independent of

one another, the marginalization shown above

with respect to the variable x4,1 does not

affect the contribution to the log-likelihood

by ~x1, ~x2, and ~x3.

• The x4,1-marginalized log-likelihood shown

in Eq. (9) can therefore be simplified to:

LL′ =

3
∑

i=1

ln p(~xi|~θ) +

∫ ∞

−∞

(

ln p(~x4|~θ)
)

p(x4,1|θg, x4,2 = 4) dx4,1

(10)

• We will now use Bayes’ Rule to simplify the

integral on the right in Eq. (10) as shown

on the next slide.

27

Expectation Maximization Tutorial by Avi Kak

• Applying the Bayes’ Rule to the second

term of the integrand in Eq. (10):

∫ ∞

−∞

(

ln p(~x4 | ~θ)
)

p(x4,1 | θg, x4,2 = 4) dx4,1

=

∫ ∞

−∞
ln p(~x4 | ~θ) p(x4,1, ~θg, x4,2 = 4)

p(~θg, x4,2 = 4)
dx4,1

=

∫ ∞

−∞
ln p(~x4 | ~θ)

p

((

x4,1
4

) ∣

∣

∣

~θg
)

· p(~θg)

p(x4,2 = 4 | ~θg) · p(~θg)
dx4,1

=

∫ ∞

−∞
ln p(~x4 | ~θ)

p

((

x4,1
4

) ∣

∣

∣

~θg
)

p(x4,2 = 4|~θg)
dx4,1

=

∫ ∞

−∞
ln p(~x4 | ~θ)

p

((

x4,1
4

) ∣

∣

∣

~θg
)

∫ ∞
∞ p

((

x′
4,1
4

) ∣

∣

∣

~θg
)

dx′
4,1

dx4,1

(11)

• The final expression shown above is easy to

handle since all the probabilities are now

described by the Gaussian model in Eq.

(3).

28

Expectation Maximization Tutorial by Avi Kak

• The x4,1-marginalized log-likelihood shown

in Eq. (10) can therefore be expressed as:

LL′ =

3
∑

i=1

ln p(~xi|~θ) +

∫ ∞

−∞
ln p(~x4 | ~θ)

p

((

x4,1
4

) ∣

∣

∣

~θg
)

∫ ∞
∞ p

((

x′
4,1
4

) ∣

∣

∣

~θg
)

dx′
4,1

dx4,1

(12)

Notice that this is a function of both the

current guess ~θg for the model parameters,

which basically is a set of constant values,

and the variables for the new guess in the

vector ~θ.

• The result in Equation (12) is our expecta-

tion for the log-likelihood of the observed

data as a function of the variables in ~θ.

29

Expectation Maximization Tutorial by Avi Kak

• Now that we have a “general” expression

for the log-likelihood expectation for the

model parameters, it’s time to get to the

business of applying the EM algorithm to

the problem at hand — for both the pur-

pose of estimating the model parameters

and the missing x4,1.

• In the discussion that follows, we will refer

to the Expectation Step as the E Step and

the Maximization Step as the M Step.

• For the very first iteration through the two

steps, we must make a reasonable random

guess for the model parameters. We will

choose

~θg =

0
0
1
1

(13)

30

Expectation Maximization Tutorial by Avi Kak

• In other words, we are choosing zero mean

and unit variance as the initial guess for

the model parameters.

• For the first invocation of the E-Step, we

plug the guess in Eq. (13) in Eq. (12) and

we get

LL′ =

3
∑

i=1

ln p(~xi|~θ) +
1

D

∫ ∞

−∞
ln p(~x4 | ~θ) p

((

x4,1
4

) ∣

∣

∣

~θg
)

dx4,1

(14)

where the constant D stands for the de-

nominator integral on the right hand side

in Eq. (12). It is given by

D =

∫ ∞

−∞
p

(

(

x′
4,1
4

)

∣

∣

∣

∣

∣

(

0
0
1
1

))

dx′
4,1

=

∫ ∞

−∞

1

2π
e

−1
2
(x2

4,1
+42) dx′

4,1

=
e−8

√
2π

(15)

31

Expectation Maximization Tutorial by Avi Kak

• We will now simplify the integral in Eq.

(14) as follows:

∫ ∞

−∞
ln p(~x4 | ~θ) p

((

x4,1
4

) ∣

∣

∣

~θg
)

dx4,1

=

∫ ∞

−∞
ln p

(

x4,1
4

)

∣

∣

∣

∣

∣

∣

µ1

µ2

σ2
1

σ2
2

 · 1

2π
e−

1
2
(x2

4,1
+42)dx4,1

=

∫ ∞

−∞
ln

(

1

2πσ1σ2

e−
1
2((x4,1−µ1)2σ2

1
+(4−µ2)2σ2

2)
)

· 1

2π
e−

1
2
(x2

4,1
+42)dx4,1

=

∫ ∞

−∞

{

ln

(

1

2πσ1σ2

)

− 1

2

[

(x4,1 − µ1)
2σ2

1 + (4− µ2)
2σ2

2

]

}

·

1

2π
e−

1
2
(x2

4,1
+42)dx4,1

=

∫ ∞

−∞
ln

(

1

2πσ1σ2

)

1

2π
e−

1
2
(x2

4,1
+42)dx4,1 ·

− 1

2

∫ ∞

−∞

[

(x4,1 − µ1)
2σ2

1 + (4− µ2)
2σ2

2

]

· 1

2π
e−

1
2
(x2

4,1
+42)dx4,1

= ln

(

1

2πσ1σ2

)

· e−8

√
2π

−

1

2

[

(1 + µ2
1)

2σ2
1 + (16− 8µ2 + µ2

2)σ
2
2

]

· e−8

√
2π

(16)

32

Expectation Maximization Tutorial by Avi Kak

• We used the following two properties of

the Gaussian integrals in deriving the final

expression shown in Eq. (16):

1√
2π

∫ ∞

−∞
e−

z2

2 dz = 1

∫ ∞

−∞
z2e−z2dz =

√
2π

(17)

where the second property is a simplifi-
cation of the following result concerning
Gaussian integrals (see Wikipedia page on
“Gaussian integrals”):

∫ ∞

0

z2ne−
z2

a2dz =
√
π
(2n)!

n!

(

a

2

)2n+1

• Substituting Eq. (16) in Eq. (14), we get

for our marginalized log-likelihood:

LL′ =

3
∑

i=1

ln p(~xi|~θ) +
1

2

[

(1 + µ2
1)

2σ2
1 + (16− 8µ2 + µ2

2)σ
2
2

]

− ln(2πσ1σ2)

(18)

33

Expectation Maximization Tutorial by Avi Kak

• We substitute in the first term of the log-

likelihood expression of Eq. (18) the values

of p(~x) evaluated at ~x1 =
(

0
2

)

, ~x2 =
(

1
0

)

,

and ~x3 =
(

2
2

)

. We then take the par-

tial derivatives of the log-likelihood with re-

spect to the parameters µ1, µ2, σ
2
1 and σ22.

Setting these partial derivatives to zero,

we obtain the following values for the new

guess according to the result shown on page

127 of Duda, Hart, and Stork:

~θnew =

0.75
2.0

0.918
2.0

(19)

• This completes one iteration of the EM al-

gorithm.

34

Expectation Maximization Tutorial by Avi Kak

• Duda, Hart, and Stork tell us that the EM

algorithm converges in three iterations to

the values shown below for µ1, µ2, σ
2
1, and

σ22:

~θnew =

1.0
2.0

0.667
2.0

(20)

• Subsequently, we may construct an ML es-

timate for the missing x4,1 by substituting

~x =
(

x4,1
4

)

and the values estimated by EM

for the parameter ~µ and Σ in Eq. (3),

taking the natural log of the resulting ex-

pression to obtained the log-likelihood, and

setting its derivative with respect to x4,1
to 0. In our case, this returns the answer

x4,1 = 1.0.

35

Expectation Maximization Tutorial by Avi Kak

• The example presented in this section rep-

resents a strict interpretation of what is

meant by an Expectation-Maximization al-

gorithm. In general, it is possible to come

up with “looser” interpretations in which

we relax the condition that each new guess

for the parameters being estimated be op-

timum (from the standpoint of optimizing

the log-likelihood of the observed data).

• If we had to re-work the example presented

so far in accordance with a looser interpre-

tation of EM, after the initial guess ~θg, we

would obtain an ML estimate for the miss-

ing x4,1 in the manner described on the

previous slide. That would constitute our

E-Step. Subsequently, we would use the

estimated value for x4,1 to construct an

ML estimate for the next guess ~θnew, and

so on. We would continue the iterations

as long as the log-likelihood of the actu-

ally observed data continues to increase.

36

Expectation Maximization Tutorial by Avi Kak

• In both the strict and the loose interpre-

tations (the loose interpretation is also re-

ferred to as the Generalized Expectation

Maximization algorithm), the algorithm is

guaranteed to converge to a local maxi-

mum of the log-likelihood of the observed

data.

37

Expectation Maximization Tutorial by Avi Kak

4. EM for Clustering Data That Can be

Modeled as a Gaussian Mixture

• Let’s say we have observed the following

N data points in a d-dimensional space:

X = {~x1, ~x2, . . . ~xN} (21)

We will assume that these N points are

drawn from K Gaussian distributions, with

the ℓth distribution characterized by the pa-

rameters θℓ = {~µℓ,Σℓ}, where µℓ is the

mean and Σℓ the covariance. We also as-

sume that the different Gaussian distribu-

tions do not carry equal weight with regard

to their contributions to the observed data.

We will represent this fact by associating

a prior probability aℓ with the ℓth Gaussian.

Obviously,
∑K

ℓ=1 aℓ = 1.

38

Expectation Maximization Tutorial by Avi Kak

• We further assume that do not know which

element of X was drawn from which of the

Gaussians. However, we do know that each

element of the dataset X is characterized

by the following mixture probability density

function:

p(~x | Θ) =

K
∑

ℓ=1

aℓ · pℓ(~x | θℓ) (22)

where, as mentioned above, aℓ is the prior

associated with the ℓth Gaussian, and Θ

represents all the parameters involved in

the description of the mixture:

Θ = (a1,, aK; θ1,, θK) (23)

As you would expect, the ℓth Gaussian in

the mixture is given by

pℓ(~x|θℓ) =
1

(2π)d/2 |Σℓ|1/2
e−

1
2
(~x− ~µℓ)

TΣ−1
ℓ

(~x− ~µℓ) (24)

where θℓ = (~µℓ,Σℓ) represents the parame-

ters for just the ℓth Gaussian.

39

Expectation Maximization Tutorial by Avi Kak

• If we assume that the N observations in X
are independent, we can write the following

expression for the probability distribution

for all of the observations in X :

p(X|Θ) =

N
∏

i=1

p(~xi | Θ)

=

N
∏

i=1

(

K
∑

ℓ=1

aj · p(~xℓ | θℓ)

)

(25)

• Substituting the individual Gaussians from

Eq. (24) in Eq. (25), we can write for

the probability distribution for all of our

dataset:

p(X|Θ) =

N
∏

i=1

(

K
∑

ℓ=1

aℓ ·
1

(2π)d/2 |Σℓ|1/2
e−

1
2
(~xi− ~µℓ)

TΣ−1
ℓ

(~xi− ~µℓ)

)

(26)

40

Expectation Maximization Tutorial by Avi Kak

• Focusing on Eq. (26), if we knew the pa-

rameter set Θ, then p(X|Θ) is obviously a

probability distribution for the dataset X .

However, if our goal is to estimate Θ from

a given set of observations X = {~x1, ~x2, . . . ~xN},
then we prefer to think of the right hand

side in Eq. (26) as the likelihood that tells

us how likely the known observations in X
are for candidate values for the elements

of Θ. To make this fact more explicit, we

rewrite Eq. (26) as

L(Θ | X) =

N
∏

i=1

(

K
∑

ℓ=1

aℓ ·
1

(2π)d/2 |Σℓ|1/2
e−

1
2
(~xi− ~µℓ)

TΣ−1
ℓ

(~xi− ~µℓ)

)

(27)

• Our goal is to construct a Maximum Like-

lihood estimate for Θ by seeking Θ∗ that

maximizes the log-likelihood:

Θ∗ = argmax
Θ

ln (L(Θ | X)) (28)

41

Expectation Maximization Tutorial by Avi Kak

• Substituting Eq. (27) in Eq. (28), we get

Θ∗ = argmax
Θ

ln

[

N
∏

i=1

(

K
∑

ℓ=1

aℓ ·
1

(2π)d/2 |Σℓ|1/2
e−

1
2
(~xi− ~µℓ)

TΣ−1
ℓ

(~xi− ~µℓ)

)]

= argmax
Θ

N
∑

i=1

ln

[(

K
∑

ℓ=1

aℓ ·
1

(2π)d/2 |Σℓ|1/2
e−

1
2
(~xi− ~µℓ)

TΣ−1
ℓ

(~xi− ~µℓ)

)]

(29)

• Looking at the expression shown on the

right hand side above, our goal of finding

a Θ that maximizes the log-likelihood is

made difficult by the fact that we are deal-

ing with the logarithm of a summation of

exponentials. So the usual convenience af-

forded by the fact that the logarithm of an

isolated Gaussian distributions reduces to

a simple quadratic cannot help us here.

• This is where the EM algorithm comes to

our rescue.

42

Expectation Maximization Tutorial by Avi Kak

• In order to use EM, we obviously need to

conceptualize the existence of unobserved

data in this case. As mentioned earlier in

the second half of Section 3, we can con-

ceptualize the needed unobserved data by

thinking of the data generation process in a

manner that allows a random variable to be

associated with the selection of the Gaus-

sian for each data point. We imagine the

N observations ~x1, ~x2, . . . , ~xN to be the re-

sults of N different data generation events.

• Next, we bring into existence a sequence of

N scalar random variables Y = {y1, y2, . . . , yN},
with yi corresponding to the data genera-

tion event that resulted in us making the

observation ~xi.

• Think of each yi as a Gaussian-selector ran-

dom variable. There are N of them and

each such variable takes on a value from

the set {1,2, . . . ,K}.

43

Expectation Maximization Tutorial by Avi Kak

• The value of the random variable yi being

yi = ℓ implies that the ith data element

was generated by the Gaussian pℓ() whose

mean is µℓ and covariance Σℓ.

• Treating Y = {y1, y2, . . . , yN} as unobserved

data allows us to use the EM algorithm

for an iterative maximization of the log-

likelihood for the data actually observed.

• While previously we wanted to estimate Θ

by maximizing the likelihood L(Θ|X), we

now want to subject the estimation of Θ

to the maximization of L(Θ | X ,Y). We

note:

L(Θ | X ,Y) = p(X ,Y | Θ)

=

N
∏

i=1

p(~xi, yi | Θ)

=

N
∏

i=1

p(~xi | yi,Θ) · p(yi) (30)

44

Expectation Maximization Tutorial by Avi Kak

• Note that we are using the notation p()

generically, in the sense that that p() in

Eq. (30) simply stands for the probability

of its argument. So in the second term in

Eq. (30), p(yi) stands for the probability

that a Gaussian-selector random variable

will take on the value yi.

• Since the conditioning of the probability

p(~xi | yi,Θ) jointly on the Gaussian-selector

random variable yi and Θ is the same as

choosing just the parameters θyi that cor-

respond to the yi
th Gaussian, L(Θ|X ,Y) can

be further simplified as follows

L(Θ | X ,Y) =

N
∏

i=1

pyi(~xi | θyi) · p(yi)

=

N
∏

i=1

ayi · pyi(~xi | θyi)

(31)

45

Expectation Maximization Tutorial by Avi Kak

• Eq. (31) makes explicit the fact that the

likelihood for all data — both observed and

unobserved — depends on the values taken

on by the Gaussian-selector random vari-

ables, yi’s, for each of the data production

events.

• Of course, in practice, we want to maxi-

mize the log-likelihood. So we rewrite the

result in Eq. (31) in the following form:

LL =

N
∑

i=1

ln
(

ayi · pyi(~xi | θyi)
)

(32)

• At this point, the reader would be well

served by reviewing Section 3 of this tu-

torial. In our discussion here, we are about

to invoke one of the most central notions

of EM — the marginalization of the log-

likelihood of all data over the unobserved

data — that was developed in that section.

46

Expectation Maximization Tutorial by Avi Kak

• At this point in our derivation, we are at

about the same point as where we were

just prior to Eq. (9) in Section 3. If you

understood the discussion in that section,

you know that we next need to marginalize

the log-likelihood shown in Eq. (32) with

respect to the unobserved data Y. This we

do by writing:

LL′ =

K
∑

y1=1

. . .

K
∑

yN=1

(N
∑

i=1

ln

(

ayi·pyi(~xi | θyi)
)

)

· p(y1 . . . yN | Θg,X)

(33)

where Θg represents the current guess for

the parameters we need to estimate. Again

using the notation p() generically, the no-

tation p(y1, . . . , yN) is for the joint proba-

bility of the N Gaussian-selector random

variables taking on the values y1 through

yN .

47

Expectation Maximization Tutorial by Avi Kak

• The Y-marginalized log-likelihood in Eq.

(33) is obviously the expectation of the

observed-data log-likelihood with respect

to the hidden variables in Y. On the other

hand, Eq. (32) shows the complete-data

log-likelihood. By this time you obviously

know that by “complete data” I mean both

the observed data X and the unobserved

data Y.

• With regard to the y1 . . . yN-summations in

Eq. (33), note the role played by the un-

known distribution p(y1, . . . , yN). This dis-

tribution is obviously related to the Gaus-

sian priors ai’s for the K Gaussians in the

mixture. Just imagine the extreme case

when, say, a0 is 0.99 and all other K − 1

ai’s are close to zero. For such an ex-

treme case, most of the N yi’s will be set

to 0. This dependence on the K priors,

ai’s, must somehow be reflected in the dis-

tribution p(y1, . . . , yN).

48

Expectation Maximization Tutorial by Avi Kak

• Since our data generation model is based

on the assumption that the choice of the

Gaussian at each of the N data produc-

tion events is made randomly (and inde-

pendently of the other such choices), we

can write

p
(

y1 . . . yN | Θg,X
)

=

N
∏

i=1

p(yi | Θg,X)

=

N
∏

i=1

p(yi | ~xi,Θ
g)

(34)

where the second expression again is based

on the independence of data generation at

each of the N different data production

events.

• Note that p(yi | ~xi,Θg) stands for

the probability that a Gaussian selector has value yi
given that the observed data element has value ~xi

and that the parameters of the mixture are set to Θg

49

Expectation Maximization Tutorial by Avi Kak

• Using Bayes’ Rule, the above probability
can be expressed in the following form:

the probability that the observation is ~xi and the
mixture parameters are Θg given that the Gaussian-
selector has value yi

multiplied by

the probability that the Gaussian-selector has value
yi

and divided by

the probability that the observation is ~xi and the mix-
ture parameters are Θg

• Expressed mathematically, we can there-

fore write

p(yi | ~xi,Θ
g) =

pyi(~xi,Θg|yi) · agyi
p(~xi,Θg)

=
pyi(~xi | Θg, yi) · p(Θg) · agyi

p(~xi|Θg) · p(Θg)

=
pyi(~xi|θgyi) · agyi
p(~xi | Θg)

=
pyi(~xi|θgyi) · agyi

∑K

i=1
agi pi(~xi | θgi)

(35)

50

Expectation Maximization Tutorial by Avi Kak

• We will now go back to Eq. (33) for the ex-

pected log-likelihood for the observed data

and simplify it further. Substituting Eq.

(34) in Eq. (33), we get

LL′ =

K
∑

y1=1

. . .

K
∑

yN=1

(N
∑

i=1

ln

(

ayi·pyi(xi | θyi)
)

)

·
N
∏

j=1

p(yj | ~xj,Θ
g)

(36)

• We will next isolate out the inner summa-

tion shown above,
∑N

i=1
ln

(

ayi · pyi(xi | θyi)
)

, over

the N observed-data generation events from

the summations over the variables in Y by

first expressing, as shown below, the inner

summation as a double summation with

the help of the Kronecker delta function

δℓ,yi (which equals 1 when ℓ = yi and zero

otherwise):

N
∑

i=1

ln

(

ayi · pyi(xi | θyi)
)

=

K
∑

ℓ=1

N
∑

i=1

δℓ,yi ln

(

aℓ · pℓ(xi | θℓ)
)

(37)

51

Expectation Maximization Tutorial by Avi Kak

• Note that the above re-write of the inner

summation in Eq. (36) merely expresses

the choice that the Gaussian selector at

the data generation event indexed i is set

to ℓ.

• Substituting Eq. (37) in Eq. (36), we can

write

LL′ =

K
∑

ℓ=1

N
∑

i=1

ln

(

aℓ·pℓ(xi | θℓ)
)

K
∑

y1=1

. . .

K
∑

yN=1

δℓ,yi ·
N
∏

j=1

p(yj | ~xj,Θ
g)

(38)

• We will now focus on the just the por-

tion
∑K

y1=1
. . .
∑K

yN=1
δℓ,yi ·

∏N

j=1
p(yj | ~xj,Θg) of the

right hand side of Eq. (38) and show that

it simplifies to just p(ℓ | ~xi,Θg), where

p(ℓ | ~xi,Θg) is the probability that the value

of the Gaussian-selector is ℓ given the ob-

servation ~xi and given that the mixture pa-

rameters are Θg.

52

Expectation Maximization Tutorial by Avi Kak

• The portion
∑K

y1=1
. . .
∑K

yN=1
δℓ,yi·
∏N

j=1
p(yj | ~xj,Θg) of

Eq. (38) can be simplified in the following

manner:

K
∑

y1=1

. . .

K
∑

yN=1

(

δℓ,yi ·
N
∏

j=1

p(yj | ~xj,Θ
g)

)

=

(K
∑

y1=1

. . .

K
∑

yi−1=1

K
∑

yi+1=1

. . .

K
∑

yN=1

N
∏

j=1,j 6=i

p(yj|~xj,Θ
g)

)

· p(ℓ|~xi,Θ
g)

(39)

Note how the summation with respect to

the variable yi collapsed to just the term

p(ℓ|~xi,Θg) on account of δℓ,yi. This term

is placed outside the large parentheses. So

the summations are now, first with respect

to the variables y1 through yi−1 and then

with respect to the variables yi+1 through

yN .

53

Expectation Maximization Tutorial by Avi Kak

• Expressing the summations over the prod-

uct as a product over a summation, we can

re-express the result in Eq. (39) in the fol-

lowing form:

K
∑

y1=1

. . .

K
∑

yN=1

(

δℓ,yi ·
N
∏

j=1

p(yj | ~xj,Θ
g)

)

=

N
∏

j=1,j 6=i

(K
∑

yj=1

p(yj | ~xj,Θ
g)

)

· p(ℓ|~xi,Θ
g) (40)

• However, since
∑K

yj=1
p(yj | ~xj,Θg) = 1, we end

up with the simplification:

K
∑

y1=1

. . .

K
∑

yN=1

(

δℓ,yi ·
N
∏

j=1

p(yj | ~xj,Θ
g)

)

= p(ℓ|~xi,Θ
g) (41)

We will substitute this result in Eq. (38)

to obtain a much simpler form for the ex-

pected log-likelihood, as we show next.

54

Expectation Maximization Tutorial by Avi Kak

• Substituting Eq. (41) in Eq. (38), we get

for Y-marginalized log-likelihood:

LL′ =

K
∑

ℓ=1

N
∑

i=1

ln

(

aℓ · pℓ(xi | θℓ)
)

· p(ℓ|~xi,Θ
g) (42)

This is the expected value of the log-likelihood

of the observed data X , with the expecta-

tion having been carried out over the un-

observed data Y.

• The result shown above lends itself to the

following further simplification:

LL′ =

K
∑

ℓ=1

N
∑

i=1

ln
(

aℓ
)

·p(ℓ|~xi,Θ
g) +

K
∑

ℓ=1

N
∑

i=1

ln
(

pℓ(xi | θℓ)
)

·p(ℓ|~xi,Θ
g)

(43)

55

Expectation Maximization Tutorial by Avi Kak

• The form shown in Eq. (43) is particu-

larly convenient for the maximization of the

log-likelihood because it separates out the

contributions from the aℓ terms and those

from the θℓ terms. Recall our goal is to

find the best values for aℓ and θℓ for all ℓ

from 1 through K since these constitute

the parameters of our data model.

• That brings to an end the analytical work

for the Expectation Step. We now have an

expression for the expectation of the log-

likelihood of the observed data X , with the

expectation having been carried out over

the unobserved data Y.

• Our next task obviously is the Maximiza-

tion Step, which calls on us to find the

model parameters that maximize the ex-

pected log-likelihood as expressed by Eq.

(43).

56

Expectation Maximization Tutorial by Avi Kak

• We will start with obtaining an update for-

mula for aℓ’s, the Gaussian priors. We want

to obtain aℓ’s through a maximization of

the log-likelihood in Eq. (43) while keeping

in the mind the constraint that
∑K

ℓ=1
aℓ = 1.

This calls for the use of a Lagrange multi-

plier λ in the following equation:

∂

∂a′ℓ

[

LL′ + λ
(

K
∑

ℓ=1

aℓ = 1
)]

= 0 (44)

for the estimation of the prior aℓ at ℓ = ℓ′.

• Substituting Eq. (43) in Eq. (44), we get:

∂

∂a′ℓ

[(K
∑

ℓ=1

N
∑

i=1

ln(aℓ) · p(ℓ|~xi,Θ
g)

)

+ λ

(

K
∑

ℓ=1

aℓ = 1

)

]

= 0

(45)

57

Expectation Maximization Tutorial by Avi Kak

• The partial derivative with respect to ℓ′

yields the following equation for each ℓ′ =
1 . . .K:

N
∑

i=1

∂

∂a′ℓ

(

ln(a′ℓ) · p(ℓ′|~xi,Θ
g)

)

+ λ = 0 (46)

• Since ∂ ln x
∂x

= 1
x
, the K equations shown above

reduce to

N
∑

i=1

p(ℓ′|~xi,Θ
g) + λ · a′ℓ = 0 (47)

• Summing both sides of the K equations

shown above and recognizing that
∑K

ℓ′=1
p(ℓ′|~xi,Θg) =

1 and
∑K

ℓ′=1
a′ℓ = 1, we end up with

λ = −N (48)

58

Expectation Maximization Tutorial by Avi Kak

• Substituting the result in Eq. (48) in Eq.

(47), we get following formula:

a′ℓ =
1

N

N
∑

i=1

p(ℓ′|~xi,Θ
g) (49)

• Eq. (49) serves as a formula for EM-based

updating of the values of the priors aℓ’s.
This is how the formula needs to be inter-

preted: Using the guess Θg for the mix-

ture parameters (recall that Θg includes

the guesses for the priors aℓ, ℓ = 1 . . .K),

calculate the posterior “class” probabilities

p(ℓ|~xi,Θg) at each of the data points ~xi,

i = 1 . . . N and then use the formula shown

above to update the values for the priors.

To emphasize the fact that the formula is

to be used for updating the values of the

priors, we re-express Eq. (49) as

anewℓ =
1

N

N
∑

i=1

p(ℓ|~xi,Θ
g) (50)

for ℓ = 1 . . .K.

59

Expectation Maximization Tutorial by Avi Kak

• Note that we referred to p(ℓ|~xi,Θg) as pos-
terior class probabilities. This is in keep-
ing with the traditional description of such
probabilities in the pattern classification lit-
erature. We are evidently thinking of each
Gaussian in the mixture as defining a class.

• That leaves us with having to develop the
EM update formulas for the means and the
covariances of the Gaussians.

• For both of these updates, we can ignore
the first of the two terms on the right hand
side in the log-likelihood formula in Eq.
(43) because it does not involve the means
and the covariances. Denoting the rest of
the log-likelihood by LL′′, we can write

LL′′ =

K
∑

ℓ=1

N
∑

i=1

ln

(

pℓ(~xi | θi)
)

· p
(

ℓ | ~xi,Θ
g
)

=

K
∑

ℓ=1

N
∑

i=1

[

−1

2
(~xi − ~µℓ)

TΣ−1
ℓ (~xi − ~µℓ)−

ln |Σℓ|
2

+ ln
1

(2π)d/2

]

· p
(

ℓ | ~xi,Θ
g
)

(51)

60

Expectation Maximization Tutorial by Avi Kak

• Taking the partial derivative of right hand
side above with respect to ~µ′ℓ and setting it

to zero for the maximization of LL′′ yields:
N
∑

i=1

Σ−1
ℓ′ · (~xi − ~µℓ′) · p

(

ℓ′ | ~xi,Θ
g
)

= 0 (52)

• Eq. (52), which must be true for all ℓ′,

ℓ′ = 1 . . .K, follows from the fact that when

a matrix A is square-symmetric, the partial

derivative ∂
∂~x

of the quadratic ∂~xTA~x
∂~x

= 2A~x.

• Eq. (52) gives the following formula for

updating the means of the Gaussians:

~µ′
ℓ =

∑N

i=1
~xi · p

(

ℓ′ | ~xi,Θg
)

∑N

i=1
p
(

ℓ′ | ~xi,Θg
) (53)

for ℓ′ = 1 . . .K.

61

Expectation Maximization Tutorial by Avi Kak

• To make more explicit the fact that it is

an update formula for the mean vectors,

we can express it in the following form

~µnew
ℓ =

∑N

i=1
~xi · p

(

ℓ | ~xi,Θg
)

∑N

i=1
p
(

ℓ′ | ~xi,Θg
) (54)

This formula tells us that, using the cur-

rent guess Θg (which includes guesses for

the means), we first estimate the poste-

rior class probabilities p(ℓ|~xi,Θg) at each of

the data points ~xi, i = 1 . . . N, and then use the

formula shown above to update the means.

• That brings us to the derivation of an up-

date formula for the covariances. As was

the case for the means, we only need to

maximize the second of the two terms in

the summation in Eq. (43) for estimating

the covariances.

62

Expectation Maximization Tutorial by Avi Kak

• That is, we only need to maximize the ex-

pression for LL′′ shown in Eq. (51). Ig-

noring the constant term inside the square

brackets in Eq. (51), we now re-express

LL′′ as shown below

LL′′ =

K
∑

ℓ=1

N
∑

i=1

[

−1

2
(~xi− ~µℓ)

TΣ−1
ℓ (~xi− ~µℓ)−

ln |Σℓ|
2

]

·p
(

ℓ | ~xi,Θ
g
)

(55)

• Making use of the identity that ~xTA~x = tr(A~x~xT),

where tr(A) denotes the trace of a square

matrix A, we can rewrite the above equa-

tion as

LL′′ =

K
∑

ℓ=1

[

1

2
ln
(

|Σ−1
ℓ |
)

(

N
∑

i=1

p(ℓ|~xi,Θ
g)

)

−

1

2

N
∑

i=1

p(ℓ|~xi,Θ
g) · tr

(

Σ−1
ℓ ·Nℓ,i

)

]

(56)

where the d×d matrix Nℓ,i = (~xi−~µℓ)(~xi−~µℓ)
T .

Recall that d is the dimensionality of our

data space. In the first term above, we

also made use of the identity |A|−1 = |A−1|.

63

Expectation Maximization Tutorial by Avi Kak

• Equation (56) is in a form that lends it-

self to differentiation with respect to Σ−1
ℓ′ ,

ℓ′ = 1 . . .K, for the maximization of LL′′. We

need to concern ourselves with two deriva-

tives involving Σ−1
ℓ′ :

∂ ln(|Σ−1

ℓ′ |)
∂Σ−1

ℓ′
and ∂tr(|Σ−1

ℓ′ |)
∂Σ−1

ℓ′
. The

first of these can be solved using the iden-

tity ∂ ln |A|
∂A

= 2A−1 − diag(A−1) and the second by
∂tr(AB)

∂A
= B+BT−diag(B). Substituting these deriva-

tives in Eq. (56) and setting the result to

zero gives us the following equation:

1

2

N
∑

i=1

p
(

ℓ′|~xi,Θ
g
)

·
(

2Σℓ′ − diag(Σℓ′)

)

− 1

2

N
∑

i=1

p
(

ℓ′|~xi,Θ
g
)

·
(

2Nℓ′,i − diag(Nℓ′,i)

)

= 0 (57)

• The above equation can be recast in the

following form:

1

2

N
∑

i=1

p
(

ℓ′|~xi,Θ
g
)

·
(

2Mℓ′,i − diag(Mℓ′,i)

)

= 0 (58)

where Mℓ′,i = Σℓ′ −Nℓ′,i for ℓ′ = 1 . . . N .

64

Expectation Maximization Tutorial by Avi Kak

• The result in Eq. (58) is of the form

2S − diag(S) = 0 (59)

with

S =
1

2

N
∑

i=1

p
(

ℓ′|~xi,Θ
g
)

·Mℓ′,i (60)

• For the identity in Eq. (59) to hold, it

must be case that S = 0, implying that

1

2

N
∑

i=1

p
(

ℓ′|~xi,Θ
g
)

·Mℓ′,i = 0 (61)

which yields the following solution

Σℓ′ =

∑N

i=1
p
(

ℓ′|~xi,Θg
)

·Nℓ′,i
∑N

i=1
p
(

ℓ′|~xi,Θg
) (62)

for ℓ′ = 1 . . . K

65

Expectation Maximization Tutorial by Avi Kak

• Substituting in Eq. (62) the value of Nℓ′,i =

(~xi−~µℓ)(~xi−~µℓ)
T that was defined just after Eq.

(56) and casting the result in the form of

a update formula as we did earlier for the

priors and means, we can write

Σnew
ℓ =

∑N

i=1
p
(

ℓ|~xi,Θg
)

· (~xi − ~µℓ)(~xi − ~µℓ)
T

∑N

i=1
p
(

ℓ|~xi,Θg
) (63)

for ℓ = 1 . . .K.

• Since you are likely to update the covari-

ances after you have updated the means,

perhaps a more precise way to express this

formula is:

Σnew
ℓ =

∑N

i=1
p
(

ℓ|~xi,Θg
)

· (~xi − ~µnew
ℓ)(~xi − ~µnew

ℓ)T

∑N

i=1
p
(

ℓ|~xi,Θg
) (64)

for ℓ = 1 . . .K.

66

Expectation Maximization Tutorial by Avi Kak

• As with the update formulas shown earlier

in Eqs. (49) and (54), the update formula

in Eq. (64) tells us that, using the guessed

parameter values in Θg (this guess obvi-

ously includes values for Σℓ, ℓ = 1 . . .K),

we first calculate the posterior “class” prob-

abilities at each of the data points ~xi. Sub-

sequently, using Eq. (64), we update the

covariances for each of the Gaussians in

the mixture.

• The three update formulas in Eqs. (49),

(54), and (64) all require us to the com-

pute using the current guess the poste-

rior class probabilities at each of the data

points. This we can do with the help of

Bayes’ Rule as follows, as shown on the

next slide.

67

Expectation Maximization Tutorial by Avi Kak

• The posterior class probabilities at each

data point ~xi, i = 1 . . . N , is given by

p(ℓ|~xi,Θ
g) =

p(~xi|ℓ,Θg) · p(ℓ|Θg)

p(ℓ, ~xi,Θg)

=
p(~xi|ℓ, θℓ) · aℓ
p(ℓ, ~xi,Θg)

=
p(~xi|ℓ, θℓ) · aℓ

numerator normalizer

(65)

• Expressing the denominator as numerator

normalizer is meant to convey the very im-

portant point that, from a computational

perspective, there is never a need to explic-

itly calculate the probabilities p(ℓ, ~xi,Θg). Af-

ter we have calculated the numerators for

all p(ℓ|~xi,Θg) on the left hand side above, we

estimate the denominator by insisting that
∑K

ℓ=1 p(ℓ, ~xi,Θg) = 1.

68

Expectation Maximization Tutorial by Avi Kak

5. Algorithm::ExpectationMaximization

— a Perl Module

• The goal of this section is to introduce you

to my Perl module Algorithm::ExpectationMaximization

for the clustering of multidimensional nu-

merical data that can be modeled as a

Gaussian mixture. This module can be

downloaded from (all in one line):

http://search.cpan.org/~avikak/Algorithm-ExpectationMaximization/

lib/Algorithm/ExpectationMaximization.pm

• If unable to directly click on the URL shown

above or this URL is difficult to copy and

paste in your browser window, you can also

reach the module by carrying out a Google

search on a string like “Kak EM Algorithm”.

Make sure you have reached the CPAN open-

source archive and that you have Version

1.1 or higher of the module.

69

Expectation Maximization Tutorial by Avi Kak

• IMPORTANT: if you are NOT a Perl pro-

grammer, the easiest way for you to use

this module for data clustering would be

to use one of the canned scripts in the

examples directory of the module. Section

6 presents a catalog of these scripts. All

you would need to do would be to mod-

ify one of these scripts to suit your needs.

The rest of this section is for those who

would like to write their own Perl scripts

for data clustering using this module.

• The module expects that the data that

needs to be clustered to be made available

through a text file whose contents should

look like:

c20 9 10.7087017 9.6352838 10.951215 ...
c7 23 12.8025925 10.6126270 10.522848 ...

b9 6 7.6011820 5.0588924 5.828417 ...

....

....

70

Expectation Maximization Tutorial by Avi Kak

• Your file is allowed to have as many columns

as you wish, but one of the columns must

contain a symbolic tag for each data record.

• You must inform the module as to which

column contains the tag and which columns

to use for clustering. This you do by defin-

ing a mask variable an example of which is

shown below:

my $mask = "N0111";

for the case when your data file has five

columns in it, the tag for each record is

in the first column, and you want only the

last three columns to be used for cluster-

ing. The position of the character ’N’ cor-

responds to the column with the data tags.

71

Expectation Maximization Tutorial by Avi Kak

• After you have set up your data file in the

manner described above, you need to cre-

ate an instance of the module in your own

Perl script. This you do by invoking the

module constructor new() as shown below.

The example call shown below is for the

case when you expect to see 3 clusters, you

want cluster seeding to be random, and you

want to set an upper limit of 300 on EM

iterations:

my $clusterer = Algorithm::ExpectationMaximization->new(
datafile => $datafile,
mask => $mask,
K => 3,
max_em_iterations => 300,
seeding => ’random’,
terminal_output => 1,
debug => 0,

);

• The choice random for cluster seeding in

the call to the constructor shown above

means that the clusterer will randomly se-

lect K data points to serve as initial cluster

centers.

72

Expectation Maximization Tutorial by Avi Kak

• Other possible choices for the constructor

parameter seeding are kmeans and manual.

With the kmeans option for seeding, the

output of a K-means clusterer is used for

the cluster seeds and the initial cluster co-

variances. If you use the manual option for

seeding, you must also specify the data

elements to use for seeding the clusters.

See the CPAN documentation page for the

module for an example of manual seeding.

• After the invocation of the constructor, the

following calls are mandatory for reasons

that should be obvious from the names of

the methods:

$clusterer->read_data_from_file();

srand(time);

$clusterer->seed_the_clusters();
$clusterer->EM();

$clusterer->run_bayes_classifier();

my $clusters = $clusterer->return_disjoint_clusters();

73

Expectation Maximization Tutorial by Avi Kak

• In the sequence of mandatory calls shown

in the previous bullet, it is the call to EM()

that invokes the Expectation-Maximization

algorithm for the clustering of data using

the three update formulas presented in Sec-

tion 4.

• The call to srand(time) is to seed the pseudo

random number generator afresh for each

run of the cluster seeding procedure. If

you want to see repeatable results from

one run to another of the algorithm with

random seeding, you would obviously not

invoke srand(time).

• The call run bayes classifier() shown pre-

viously as one of the mandatory calls car-

ries out a disjoint clustering of all the data

points using the naive Bayes’ classifier.

74

Expectation Maximization Tutorial by Avi Kak

• After you have run run bayes classifier(),

a call to return disjoint clusters() returns

the clusters thus formed to you. Once you

have obtained access to the clusters in this

manner, you can display them in your ter-

minal window by

foreach my $index (0..@$clusters-1) {
print ‘‘Cluster $index (Naive Bayes): \

@{$clusters->[$index]}\n\n’’
}

• If you would like to also see the clusters

purely on the basis of the posterior class

probabilities exceeding a threshold $theta1,

you call

my $theta1 = 0.5;
my $posterior_prob_clusters =
$clusterer->return_clusters_with_posterior_\

probs_above_threshold($theta1);

where you can obviously set the threshold

$theta1 to any value you wish.

75

Expectation Maximization Tutorial by Avi Kak

• When you cluster the data with a call to
return clusters with posterior probs above threshold($theta1)

as shown in the previous bullet, in general
you will end up with clusters that overlap.

You can display them in your terminal win-
dow in the same manner as shown previ-
ously for the naive Bayes’ clusters.

• You can write the naive Bayes’ clusters out

to files, one cluster per file, by calling

$clusterer->write_naive_bayes_clusters_to_files();

The clusters are placed in files with names
like

naive_bayes_cluster1.dat
naive_bayes_cluster2.dat
...

• You can write out the posterior-probability
based clusters to files by calling:

$clusterer->write_posterior_prob_clusters_above_\
threshold_to_files($theta1);

76

Expectation Maximization Tutorial by Avi Kak

• The threshold $theta1 in the call shown

in the previous bullet sets the probability

threshold for deciding which data elements

to place in a cluster. The clusters them-

selves are placed in files with names like

posterior_prob_cluster1.dat
posterior_prob_cluster2.dat
...

• The module allows you to visualize the

clusters when you do clustering in 2D

and 3D spaces.

• In order to visualize the output of cluster-

ing, you must first set the mask for cluster

visualization. This mask tells the module

which 2D or 3D subspace of the original

data space you wish to visualize the clus-

ters in.

77

Expectation Maximization Tutorial by Avi Kak

• After you have decided on a mask, visu-

alization typically involves making the fol-

lowing calls:

my $visualization_mask = ‘‘111’’;

$clusterer->visualize_clusters($visualization_mask);

$clusterer->visualize_distributions($visualization_mask);

where the first call for the visualization of

naive Bayes’ clusters and the second for the

visualization of posterior-probability based

clusters.

• When clustering in 2D or 3D spaces, you

can also directly create image PNG files

that correspond to terminal visualization of

the output of clustering:

$clusterer->plot_hardcopy_clusters($visualization_mask);
$clusterer->plot_hardcopy_distributions($visualization_mask);

78

Expectation Maximization Tutorial by Avi Kak

• The PNG image of the posterior probability

distributions is written out to a file named

posterior prob plot.png and the PNG im-

age of the disjoint Naive Bayes’ clusters to

a file called cluster plot.png.

• The module also contains facilities for

synthetic data generation for experi-

menting with EM based clustering.

• The data generation is controlled by the

contents of a parameter file that is sup-

plied as an argument to the data gener-

ator method of the module. The priors,

the means, and the covariance matrices in

the parameter file must be according to

the syntax shown in the param1.txt file in

the examples directory. It is best to edit

a copy of this file for your synthetic data

generation needs.

79

Expectation Maximization Tutorial by Avi Kak

• Here is an example of a sequence of calls
that you would use for generating synthetic
data:

my $parameter_file = ‘‘param1.txt’’;
my $out_datafile = ‘‘mydatafile1.dat’’;
Algorithm::ExpectationMaximization->cluster_data_generator(

input_parameter_file => $parameter_file,
output_datafile => $out_datafile,
total_number_of_data_points => $N);

where the value of $N is the total number of
data points you would like to see generated
for all of the Gaussians. How this total

number is divided up amongst the Gaus-
sians is decided by the prior probabilities
for the Gaussian components as declared
in input parameter file.

• The synthetic data may be visualized in a
terminal window and the visualization writ-

ten out as a PNG image to a disk file by

my $data_visualization_mask = ‘‘11’’;
$clusterer->visualize_data($data_visualization_mask);
$clusterer->plot_hardcopy_data($data_visualization_mask);

80

Expectation Maximization Tutorial by Avi Kak

6. Convenience Scripts in the examples

Directory of the Module

Algorithm::ExpectationMaximization

• Even if you are not a Perl programmer, you

can use the module Algorithm::ExpectationMaximization

for clustering your data through the con-

venience scripts that you will find in the

examples directory of the module. You would

just need to edit one of the scripts to suit

your needs and then all you have to do is

to execute the script.

• And even if you are a Perl programmer,

becoming familiar with the scripts in the

examples directory is possibly the best strat-

egy for becoming familiar with this module

(and its future versions).

81

Expectation Maximization Tutorial by Avi Kak

• The rest of this section presents a brief in-

troduction to the five scripts in the examples

directory:

– canned example1.pl:

The goal of this script is to show EM-

based clustering of overlapping clusters

starting with randomly selected seeds.

As programmed, this script clusters the

data in the datafile mydatafile.dat. The

mixture data in the file corresponds to

three overlapping Gaussian components

in a star-shaped pattern.

– canned example2.pl:

This goal of this script is to use the out-

put of the K-Means clusterer to serve as

seeds for the EM-based clusterer. The

data fed to this script consists of two

well separated blobs.

82

Expectation Maximization Tutorial by Avi Kak

– canned example3.pl:

This script gives a demonstration of how

you would structure a call to the module

constructor when you want to specify

the cluster seeds manually.

– canned example4.pl:

Whereas the three previous scripts demon-

strate EM based clustering of 2D data,

this script uses the module to cluster 3D

data. This script is meant to demon-

strate how the EM algorithm works on

well-separated but highly anisotropic clus-

ters in 3D.

– canned example5.pl:

This script also demonstrates clustering

in 3D but now we have one Gaussian

cluster that “cuts” through the other

two Gaussian clusters.

83

Expectation Maximization Tutorial by Avi Kak

7. Some Clustering Results Obtained

with Algorithm::ExpectationMaximization

This section presents some results obtained

with the Algorithm::ExpectationMaximization module. We

will show five different results obtained with

the five canned example scripts in the examples

directory.

Results Produced by the Script canned example1.pl:

Shown next is a 2D scatter plot that consists

of three overlapping Gaussian clusters that was

fed into the script canned example1.pl. As the

reader will recall from the previous section, this

canned script uses random seeding for the ini-

tialization of the cluster centers.

84

Expectation Maximization Tutorial by Avi Kak

When you execute the script canned example1.pl

using the data shown in the scatter plot on the

previous slide, you will get two types of clus-

ters: the disjoint Naive Bayes’ clusters and the

clusters based on the posterior class probabili-

ties exceeding a specified threshold. Shown at

the top on the next slide are the three Naive

Bayes’ clusters as produced by the call to

canned example1.pl.

85

Expectation Maximization Tutorial by Avi Kak

And for the same input data, shown on the

next slide are the three posterior-probability

based clusters produced by the module.

86

Expectation Maximization Tutorial by Avi Kak

For the Naive Bayes’ clusters shown at the top

on the previous slide, each data point gets a

single label (a single color in our case). On the

other hand, for the posterior-probability clus-

ters shown above, it is possible for a single

pixel to acquire multiple class labels. In try-

ing to visually discern the color identities of

the pixels in the figure on this slide, note that

when a color is assigned multiple colors, it is

likely that the color one actually sees at the

pixel is the last color that was applied to the

pixel. It is important to mention that this am-

biguity would exist only in the visualization of

the clusters. On the other hand, when you ac-

tually write out the clusters to disk files, you

can see all the pixels in each cluster.

87

Expectation Maximization Tutorial by Avi Kak

Results Produced by the Script canned example2.pl:

I’ll now show results obtained with the script

canned example2.pl with K-Means based seed-

ing for the initialization of the cluster centers

and the cluster covariances. The figure shown

below is a scatter plot of the data that we will

feed into canned example2.pl.

88

Expectation Maximization Tutorial by Avi Kak

When we run canned example2.pl, as with the

previous example, we end with two different

clustering results (which in this case look iden-

tical because the clusters are so well sepa-

rated). One of these is for Naive Bayes’ clus-

tering, which we show in the figure below:

And the other is clustering on the basis of

the posterior probabilities exceeding a given

threshold. We show this result in the figure

shown at the top on the next slide when the

threshold is set to 0.2.

89

Expectation Maximization Tutorial by Avi Kak

As is to be expected for this example, since the

two clusters are so widely separated, the Naive

Bayes’ clusters and the posterior-probability based

clusters here are identical.

Results Produced by the Script canned example3.pl:

Our next demonstration involves manual seed-

ing of the clusters for the data that is displayed

in the scatter plot at the top of the next slide.

The data consists of three overlapping clus-

ters, with the cluster at the bottom cutting

across the other two.

90

Expectation Maximization Tutorial by Avi Kak

When you execute canned example3.pl, you’ll

again get two outputs for the two different

types of clusters the module outputs. Shown

below are the Naive Bayes’ clusters for this

data:

91

Expectation Maximization Tutorial by Avi Kak

And shown below are the clusters based on

the posterior class probabilities exceeding 0.2

threshold.

In the clusters shown above, if you look care-

fully at some of the data points in the over-

lap regions, you will notice that some of the

pixels have more than one colored marker, il-

lustrating the notion of soft clustering that is

achieved with posterior class probabilities.

92

Expectation Maximization Tutorial by Avi Kak

Results Produced by the Script canned example4.pl:

The three clustering examples we have pre-

sented so far have all dealt with 2D data. Now

I’ll show some results of clustering 3D data.

When clustering is carried out in 3D or a larger

number of dimensions, visualization of result

of clustering becomes a bigger challenge —

especially when you show the visualizations in

hardcopy as we do here. Talking about 3D,

when you visualize the clusters on a computer

terminal, you can at least rotate the figure and

look at the clusters from different viewpoints

to gain a better sense of how good the clusters

look. In hardcopy, as is the case with us here,

all you can do is to show the results from one

viewpoint.

Shown on the next slide is a 3D scatter-plot of

the data for the script canned example4.pl.

93

Expectation Maximization Tutorial by Avi Kak

As you can see, in this case the data con-

sists of three isolated clusters. We will ask the

script canned example4.pl to cluster this data

with random seeding for initialization.

When you run the script, you will again two

clustering outputs, one for the Naive Bayes’

clusters and the posterior-probability based clus-

ters. Shown at the top on the next slide are

the Naive Bayes’ clusters for this data.

94

Expectation Maximization Tutorial by Avi Kak

And shown on the next slide are the clusters

based on the posterior class probabilities ex-

ceeding 0.2 threshold.

95

Expectation Maximization Tutorial by Avi Kak

Both the Naive Bayes’ clusters and the posterior-

probability-based clusters are identical in this

case, as you would expect, since the clusters

are so well separated.

96

Expectation Maximization Tutorial by Avi Kak

Results Produced by the Script canned example5.pl:

That brings us to the final example of this sec-

tion. While the previous example showed clus-

tering of 3D data consisting of well separated

clusters, now let’s take up the case of overlap-

ping 3D clusters.

97

Expectation Maximization Tutorial by Avi Kak

Shown on the previous slide is a scatter plot

of the 3D data we will now take up. The data

consists of three elongated blobs, two oriented

parallel to each other and one perpendicular to

the other two.

When we run the script canned example5.pl with

the data shown on the previous slide, for the

Naive Bayes’ clusters we get the clusters shown

below:

98

Expectation Maximization Tutorial by Avi Kak

And shown below are the clusters based on
the posterior class probabilities exceeding 0.2
threshold.

If you look carefully at the rightmost cluster
shown above, you will notice some red points
interspersed with the green points. Of the var-
ious demos included in this section, this is the
probability the best example of the difference
between Naive Bayes’ and posterior-probability
based clustering.

99

Expectation Maximization Tutorial by Avi Kak

8. Acknowledgments

If you enjoyed the discussion in Section 3, the credit for
that must go entirely to Richard Duda, Peter Hart, and
David Stork for their introduction to EM on pages 126
through 128 of their book “Pattern Classification.”

And if you enjoyed the discussion in Section 4, the credit
for that must go entirely to Jeff Bilmes for his technical
report entitled “A Gentle Tutorial of the EM Algorithm
and its Application to Parameter Estimation for Gaus-
sian Mixture and Hidden Markov Models” (TR-97-021,
University of California, Berkeley).

Note that all of my discussion in Sections 3 and 4 is
merely a further elaboration of the material at the two
sources mentioned above. If you are a reader who be-
lieves that the original authors listed above had already
explained the material in sufficient detail and that my
tutorial here merely amounts to belaboring the obvious,
please accept my apologies.

If there is any pedagogical merit at all to this tutorial,
it consists of using the EM example presented by Duda
et al. as a stepping stone to my explanation of Bilmes’s
derivation of EM for Gaussian Mixture Models.

I was first exposed to EM roughly a decade ago by Jen-
nifer Dy, a former Ph.D. student (co-supervised by Carla

100

Expectation Maximization Tutorial by Avi Kak

Brodley and myself) who is now on the faculty at North-
eastern University. Jennifer was using EM for unsuper-
vised feature selection in the context of content-based
image retrieval. Here is a citation to that work: Dy,
Brodley, Kak, Broderick, and Aisen “Unsupervised Fea-
ture Selection Applied to Content-Based Retrieval of
Lung Images,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2003.

101

